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ABSTRACT: Mathematical and geostatistical approaches such as the inverse distance weighted and kriging interpolation 
methods have been widely used to integrate the information of subsurface strata. These approaches have limitations, 
however, in that the spatial variability of the soil strata is not considered, or a statistical assumption is essential for 
interpolation. In this study, a method of subsurface stratification based on the application of GIS-based artificial neural 
networks was developed. This method is real-data-driven and does not require any geostatistical assumption. More than 
30,000 site investigation data of Seoul from the integrated DB center for national geotechnical information in South Korea 
were adopted for training and validation of neural network models. Outlier analysis based on cross-validation using 
4×4km grids was carried out for detecting and eliminating the outliers. The GIS-based topographic features, such as 
gradient and geological maps, were also utilized for modeling artificial neural networks. The spatial interpolation results 
of Seoul from the GIS-based neural network model and ordinary kriging were presented. Finally, cross-validation was 
implemented, and the root mean square errors of the methods were employed for quantitative performance evaluation. 
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1. Introduction 

The reliable prediction of subsurface geolayer 
information is essential for estimating the earth volume 
of infrastructure construction sites. The number of 
borehole data required for the prediction of geolayer 
information is limited, however, for economic and 
spatiotemporal reasons. In addition, it is impossible to 
secure reliable three-dimensional geolayer information 
from the one-dimensional borehole data points. The earth 
volume of construction sites has been estimated based on 
the engineer’s experience, but as an empirical method, 
numerous errors occur at the actual site conditions. 

The spatial integration methods for interpolating 
discontinuous spatial variables include mathematical 
techniques like the simple averaging, triangular, and 
inverse weighted distance methods as well as the 
geostatistical technique, which is represented by kriging 
methods. [1-3] In particular, geostatistical techniques 
have been widely used as a tool for solving spatial 
problems. They are known to be more reliable than 
mathematical techniques because the spatial variability in 
the distance between two points is considered for spatial 
interpolation. 

Geostatistical techniques, however, are difficult to 
apply in construction areas with high uncertainty and 
variability. It also has the disadvantage of requiring 
various statistical assumptions. Therefore, there is a need 
to improve the prediction reliability and accuracy by 
introducing a data-driven approach instead of the 
conventional empirical and statistical approaches. 

In this study, geographic information system (GIS)-
based artificial neural network models were constructed 
for the reliable prediction of geolayer information, and 
their reliability was evaluated compared to the 
conventional method, ordinary kriging. First of all, in the 

whole area of Seoul, the capital of South Korea, a geo-
database was built by collecting and standardizing 
borehole information from the integrated database (DB) 
center for national geotechnical information in South 
Korea. Using the constructed database, the artificial 
neural networks (ANNs) were learned, and models for 
the prediction of geolayer information were constructed. 
The models included a single-layer neural network model 
and a multiple-layer neural network model (multi-layer 
perceptron, MLP). The subsurface elevations of each 
geolayer were estimated from the coordinate information 
of the boreholes through two ANN models. The 
reliability of the prediction results of the ANN model and 
the geostatistical technique, ordinary kriging, was 
quantitatively evaluated using independent cross-
validation.  

2. Methodology 

2.1 Ordinary kriging 

Geostatistics is a field of statistics that solves 
spatiotemporal problems by analyzing the distribution 
and correlations of regionalized variables. [4] Ordinary 
kriging is one of the most representative methods of 
geostatistics, and it uses variograms to correlate spatial 
data and provide predictive values. Specifically, the 
properties of unsampled points are predicted through the 
linear weighted combination of the surrounding values 
already known. The ordinary kriging equation is 
expressed as shown below. 
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where 𝑧∗	is the predicted value at an unknown point, 𝑧& 



is the value whose location and data are already known, 
𝜆& is the weight of each point, and  is the number of data 
used for kriging prediction. 

The kriging method assumes that the error between 
the predicted and true values should be minimized for the 
determination of the weight, and that the estimated value 
should not be biased. Due to this characteristic, kriging 
shows excellent prediction ability when the raw data 
distribution is gentle and follows the normal distribution. 
It is disadvantageous, however, in that the variance of 
kriging predictions tends to decrease sharply when raw 
data with large variance are used, and in that the 
characteristic distributions containing extreme values are 
difficult to predict. [5] 

2.1. Artificial neural network models 

ANNs are machine learning algorithms created by 
mathematically simulating the process of human neural 
networks. Researches on ANN have been conducted for 
a long time, but since the development of a coefficient 
estimation method called “back-propagation,” ANN has 
been used to solve various problems. [6-8] Especially in 
the current age of big data, it is widely used to process 
various characters, graphics, and sound information. [9] 

ANNs in machine learning are classified into 
supervised and unsupervised learning according to the 
purpose of analysis. The supervised neural network 
models for prediction include the multi-layer perceptron, 
recurrent neural network, convolutional neural network, 
etc. In this study, the MLP models were used for the 
prediction of geolayer information. Fig. 1 shows the 
framework for the development of a subsurface geolayer 
prediction model using ANN. 
 

 
Figure 1. Framework for the development of a subsurface geolayer 
prediction model using ANN: training and prediction phases. 
 

The neural network is composed of an input layer, a 
hidden layer (or hidden layers), and an output layer. In 
the input layer, there are neurons in which each input 
variable matches 1:1. In the hidden layer, there are 
neurons generated by combining the neurons of the input 
layer and the weight. The complexity of the model is 
determined according to the number of layers in the 
hidden layer, and when the number of hidden layers 
becomes 2 or more, the model is called “deep neural 
network” or “deep learning.” In the output layer, there are 
neurons generated by combining the neurons in the 
hidden layer with the weights, and the number of output 
layers is determined according to the type of dependent 
variable (numeric, binary, or multinomial) to be 

predicted. The neurons in the hidden and output layers 
perform the function of calculating the sum of the input 
values and the weights of the previous layer. In addition, 
an activation function for outputting a signal as a 
weighted sum of neurons is performed. 

In this study, the independent variables of the input 
layer used the x, y coordinates and the elevation of the 
boreholes, and the dependent variables were set as 
geolayer information in elevation form. Two neural 
network models (single- and multiple-layer) were created, 
as shown in Fig. 2 and 3, respectively. In the single-layer 
neural network model, there is a hidden layer between the 
independent and dependent variables, and the activation 
function creates a nonlinear effect, like the generalized 
linear model. 
 

 
Figure 2. A single-layer neural network model for subsurface geolayer 
stratification, with one hidden layer. 
 

 
Figure 3. A multiple-layer neural network model for subsurface 
geolayer stratification, with three hidden layers. 
 

In the multiple-layer neural network model, the 
number of hidden layers is added to the single-layer 
neural network model. The number of hidden layers was 
3, and each hidden layer was composed of 5 unit neurons. 
The neural network finds the weight that minimizes the 
prediction error through the gradient descent method. In 
the neural network models for the prediction of geolayer 
information, an Adam optimizer is used to finely adjust 
the learning speed so as to minimize the prediction error. 
The dropout technique is also applied to prevent the 
overfitting problem that may be caused by the presence 
of many hidden layers. The dropout method simplifies 
the learning model by randomly selecting a constant 
percenter of input or hidden layer neurons during each 
learning process. In addition, the Xavier initial value 
setting technique was applied. The neural network 
models were created by tensorflow, an open-source 
software developed by Google and released in 2015.  



3. Geo-Database Construction 

3.1. Borehole information of Seoul 

For the prediction of the subsurface geolayer 
information of Seoul, site investigation data were 
collected from the integrated DB center for national 
geotechnical information in South Korea 
(https://www.geoinfo.or.kr). Seoul is the capital of South 
Korea and has a 605.25km2 area. The collected data were 
33,867 boring data as of 2017, and the distribution of the 
data is shown in Fig. 4 below. 

Geolayer information is distributed in a specific 
order, depending on the depth of each stratum according 
to the geological formation process. In the case of the 
subsurface of Seoul, bedrock, soft rock, weathered rock, 
weathered residual soil, sedimentary soil, and fill soil are 
generally distributed in order from the bottom. For the 
prediction of geolayer information, the thickness of each 
stratum or the elevation value between the strata can be 
used. In this study, the elevation values between the strata 
were used as a dependent variable. 
 

 
Figure 4. Distribution of the boreholes in Seoul for the development of 
ANN models (total of 33,867 boreholes as of 2017). 

3.2 Outlier analysis 

Unfortunately, 15,301 of the boring data of Seoul 
were found not to have subsurface geolayer information. 
In addition, even if the subsurface geolayer information 
was included, there were some cases in which the ground 
elevation of the boreholes was significantly different 
from that in the digital elevation model (DEM). DEM 
contains data that show the shape of the terrain by storing 
the elevation value of the terrain as a numerical value. 
There were 2,710 boreholes with a more-than-100-meter 
ground elevation deviation from DEM. This deviation 
was due to the fact that the notation of ground elevation 
was different for each construction project, and the 
ground elevation values of 2,439 boreholes were 
corrected with the ground elevation from DEM. [10] 

It is important to use reliable data for the learning of 
neural network models. The site investigation data, 
however, may include outliers due to human factors like 
measurement errors as well as the inherent homogeneity 
and spatial variability of the soil. Outlier analysis was 
performed to remove the outliers included in the boring 
data of Seoul. 
 

 
Figure 5. Outlier analysis result of the borehole dataset of Seoul using 
cross-validation: one of the 4×4km plain areas. 
 

The outlier detection method based on cross-
validation was applied to the boring data of Seoul. 
[11][12] The entire area of Seoul was divided into 4x4km 
subdivisions, and outlier analysis was performed for each 
divided area. Fig. 5 shows the result of one of the outlier 
analyses of the borehole dataset of Seoul. As outliers 
increased, the root mean square error (RMSE) decreased. 
As the percentage of boreholes removed increased, 
however, the number of boring data available for neural 
network learning decreased. Therefore, the method to 
determine the optimal outlier ratio was adopted, such as 
the threshold point of the RMSE and outlier ratio to total 
number of data. 
 
Table 1. Numbers of boreholes from the geo-database of Seoul used to 
construct ANN models 

Total boreholes 33,867 boreholes 

Boreholes with ground 
elevation data 18,566 boreholes 

Boreholes with a more-than-
100-meter ground elevation 

deviation from DEM 
2,710 boreholes 

Boreholes with corrected 
ground elevation 2,439 boreholes 

Boreholes with outliers 2,506 boreholes 

Boreholes without outliers 15,789 boreholes 

Boreholes for learning 11,052 boreholes 

Boreholes for validation 4,737 boreholes 

 
Table 1 shows the numbers of geo-database borehole 

information used for neural network traning and 
validation. The number of boreholes exclued by outlier 
analysis among the boring data with geolayer 
information was 2,506. Of the data excluding the outliers, 
11,502 boring data (70%) were used for learning, and 
4,737 boring data (30%) were used for validation. 



4. Spatial Interpolation Results of the 
Geolayer Information of Seoul 

The subsurface elevation values of each geolayer 
were interpolated using ordinary kriging, the single-layer 
neural network model, and the multiple-layer neural 
network model. A part of Seoul was selected for the 
target area for spatial interpolation. Fig. 6 shows the air 
view of the target area. Its size was 766x651 m. The 74 
boring information from the geo-database was used as the 
spatial interpolation of the target area. 

As mentioned before, three independent variables 
were used as input values: the x, y coordinates and the 
ground elevation, and for the output values, the 
dependent variable of geolayer information was used. 
Geolayer information refers to the four elevations of  
strata boundary: the elevation between the fill and 
sedimentary soil layer, the elevation between the 
sedimentary and residual soil layer, the elevation 
between the weathered residual soil and weathered rock 
layer, and the elevation between the weathered and soft 
rock layer. [3]	
 

 
Figure 6. Application area of subsurface geolayer stratification. 
 

Root mean square error was used as an indicator for 
the quantitative analysis of the reliability of each spatial 
interpolation result. The RMSE values of the neural 
network models were obtained during the traning and 
validation phases, and the RMSE values of ordinary 
kriging were calculated through cross-validation. RMSE 
refers to the difference between the actual field test 
values and the estimated values, and is expressed by the 
equation below. 
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where 𝑦& is the actual experimental (observed) value, 𝑦9:  
is the estimated value, and N is the total number of 
boreholes. 

The cross-validation method used to obtain the 
RMSE values from ordinary kriging is classified as 
leave-one-out, k-fold, or independent cross-validation 

according to the number of excluded points used in the 
analysis process. In this study, the independent cross-
validation method was used. Table 2 shows the RMSE 
values through the reliablity analysis results. 
 
Table 2. Reliability analysis results obtained using independent cross-
validation: RMSE (m) 

Elevation 
between 

strata 

Ordinary 
kriging 

Single-layer 
neural 

network  

Multiple-
layer neural 

network 

Fill soil and 
sedimentary 

soil 
3.31 4.20 3.19 

Sedimentary 
soil and 

weathered 
residual soil 

3.10 6.79 2.52 

Residual soil 
and weathered 

rock 
4.69 10.01 5.68 

Weathered 
rock and soft 

rock 
6.91 9.55 6.18 

 
Among the three spatial interpolation methods, the 

single-layer neural network model recorded the largest 
RMSE values from the reliability test. In particular, it had 
the largest RMSE in the boundary layer between residual 
soil and weathered rock. The RMSE values obtained 
from the reliability analysis of the multiple-layer neural 
network model and ordinary kriging had similar 
tendencies for all the boundary layers. The RMSE of the 
multiple-layer neural network model was smaller than 
that of ordinary kriging, except for the boundary layer 
between the residual soil and weathered rock. 
 

 
Figure 7. Subsurface stratification results of the geolayers obtained 
using the multiple-layer neural network model. 
 

The results of the reliability test showed that there is 
slightly higher reliability of the multiple-layer neural 
network model over the geostatistical method that is 
conventionally used to predict the geolayer information. 
Thus, the applicability of the multiple-layer neural 
network model in the prediction of geolayer information 
was confirmed. As can be seen in Fig. 7, however, the 
multiple-layer neural network model cannot completely 



reproduce the continuity of the geolayer information. In 
the shallow boundary layers, the prediction result showed 
some spatial variability, but in the deep boundary layers, 
random values were predicted without any spatial 
tendency. This might have been due to the insufficient 
data for learning and validation, incorrect neural network 
model construction, and lack of independent input 
variables. 

5. Conclusions and Further Research 

In this study, geographic information system (GIS)-
based artificial neural network (ANN) models were 
constructed for the reliable spatial interpolation of 
subsurface geolayer information, and their reliability was 
evaluated compared to that of the conventional 
geostatistical method, ordinary kriging. The study results 
and the further researches needed are summarized below. 

(1) A site investigation geo-database was constructed 
with the boring data obtained from the integrated DB 
center for national geotechnical information in South 
Korea to predict and interpolate the geolayer elevation.  

(2) A single-layer neural network model and a 
multiple-layer neural network model were created by 
learning the boring data from the geo-database. The x, y 
coordinates and the ground elevation were set as input 
variables, and the elevation layers between the strata 
were set as the output variables. 

(3) Spatial interpolation of the subsurface elevation of 
each geolayer was carried out using the two 
aforementioned neural network models and ordinary 
kriging. For the results of the reliability test, the single-
layer neural network model had the lowest reliability. 
The predictive reliability of the multiple-layer neural 
network model was not significantly different from that 
of ordinary kriging. 

(4) Apart from the reliability analysis results, the 
spatial variability and continuity of the geolayer 
information were not properly reproduced in some 
boundary layers between the subsurface strata. 

(5) This research is part of an ongoing project with 
the purpose of assessing the applicability of the 
prediction and spatial interpolation of subsurface 
geolayer information. Further research will be conducted 
to compensate for the shortcomings of the above ANN 
models. In such research, for instance, the topographic 
elements will be considered input variables of the ANN 
model. For this purpose, a GIS-based database of various 
topographic elements was constructed, as shown in Fig. 
8. The topographic factors under consideration are the 
slope angle, dip direction, topographic index, wetness 
index, and gradient curvature. 
 

 
Figure 8. Example of a GIS-based topographic element database in 
Seoul: slope and topographic index. 
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